Problem Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming : Trimming a consistent DL knowledge base, relying on linguistic evidence supervisors : Laure Vieu et Nathalie Aussenac-Gilles

Julien Corman

IRIT

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming : assumptions

1 Problem

2 Intuition

3 Similarity

4 Plausibility

5 Trimming

6 Experiments

7 Extensions

8 Appendices

MF

Trimming : illustration

Trimming : assumptions

DL and OWL

Description Logics (DL):

- Decidable fragments of FOL
- ALC = "modal fragment" of FOL : unary and binary predicates only (called *atomic concepts* and *roles*), no identity, no function, restrictions on quantification (see appendix).
- Extensions : nominals, cardinality restriction, role subsumption, role composition, inverse roles, ...
- Algorithms and libraries for different tasks/problems : consistency, entailment, modularity, minimal conflicts,

Problem

- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices M F
- Trimming : illust ration Trimming :

DL and OWL

Description Logics (DL):

- Decidable fragments of FOL
- ALC = "modal fragment" of FOL : unary and binary predicates only (called *atomic concepts* and *roles*), no identity, no function, restrictions on quantification (see appendix).
- Extensions : nominals, cardinality restriction, role subsumption, role composition, inverse roles, ...
- Algorithms and libraries for different tasks/problems : consistency, entailment, modularity, minimal conflicts,

OWL 2

- Knowledge representation language, W3C recommendation.
- Equivalent to the DL $SROIQ^{(D)}$
- Several syntaxes, among which a (hardly readable) RDF serialization.

Problem

- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices MF Trimming :
- illust ration Trimming assumptions

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming : assumptions

DBPedia

hasKeyPerson(Virgin Holidays,CEO).
hasKeyPerson(Caixa Bank,CEO).
hasOccupation(Peter Munk,CEO).

DBPedia

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming :

hasKeyPerson(Virgin Holidays,CEO). hasKeyPerson(Caixa Bank,CEO). hasOccupation(Peter Munk,CEO). hasKeyPerson(BrookField Office Properties, Peter Munk). ⊤ ⊑ ∀hasKeyPerson.Person.

DBPedia

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming : assumptions

hasKeyPerson(Virgin Holidays,CEO). hasKeyPerson(Caixa Bank,CEO). hasOccupation(Peter Munk,CEO). hasKeyPerson(BrookField Office Properties, Peter Munk). T ⊑ ∀hasKeyPerson.Person.

- Intuitively absurd : violates for instance "No individual (CEO here) can be both a person and the occupation of a person".
- More pragmatically, may lead to erroneous inferences : e.g. Virgin Holidays and Caixa Bank have the same Person as a keyPerson.
- But logically consistent and coherent.

DBPedia

Problem

Intuition Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming : doctoralAdvisor(Thaddeus S.C. Lowe, Smithsonian Institution). doctoralAdvisor(Nick Katz, Bernard Dwork). owningCompany(Smithsonian Networks, Smithsonian Institution). T GvdoctoralAdvisor.Person.

■ Still logically consistent and coherent.

DBPedia

Problem

Intuition

Similarity

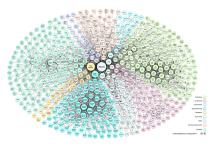
Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming illustration


Trimming : assumptions doctoralAdvisor(Thaddeus S.C. Lowe, Smithsonian Institution). doctoralAdvisor(Nick Katz, Bernard Dwork). owningCompany(Smithsonian Networks, Smithsonian Institution). T GvdoctoralAdvisor.Person.

- Still logically consistent and coherent.
- These are not just "factual" errors, like director(Citizen Kane, Woody Allen).
- Source of the problem :
 - genuine typos
 - incompatible understandings/uses of a same DL individual/concept/role.

LOD

Problem

Intuition Similarity Plausibility Trimming Experiments Extensions Appendices MF Trimming : illustration Trimming : assumptions

- Billions of RDF triples, a large part is OWL expressible.
- Sources : handwritten statements, serialized DBs, automatically extracted data, ...
- Interoperability \approx signatures overlap.
- Low expressiveness overall : e.g. negation is discouraged.
- Consequence : absurd but consistent sets of statements.

OWL data : consistent/coherent by default

Problem

- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices M F
- Trimming :
- illust ration Trimming :
- assumptions

- One of the following is necessary for an OWL 2 dataset to be inconsistent/incoherent :
 - owl:complementOf or owl:disjointWith
 - owl:negativeObjectPropertyAssertion
 - owl:disjointObjectProperties, owl:AsymmetricProperty or owl:irreflexiveObjectProperty.
 - owl:oneOf
 - owl:Nothing
 - owl:objectMaxCardinality
 - ∎ etc...

OWL data : consistent/coherent by default

Problem

- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices M F
- Trimming :
- illust ration Trimming :
- assumptions

- One of the following is necessary for an OWL 2 dataset to be inconsistent/incoherent :
 - owl:complementOf or owl:disjointWith
 - owl:negativeObjectPropertyAssertion
 - owl:disjointObjectProperties, owl:AsymmetricProperty
 or owl:irreflexiveObjectProperty.
 - owl:oneOf
 - owl:Nothing
 - owl:objectMaxCardinality
 - ∎ etc...

Rarely used (source : LODStats (LODCLoud sample))

- $owl:subClassOf : > 89\ 000$ occ.
- owl:complementOf : 2 occ.
- owl:disjointWith : 33 occ.

Proposal

Problem

- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices MF Trimming illustration
- Trimming : assumptions

- Automatically gathered linguistic evidence in order to detect and repair such violations of common sense.
 - Detect : identify consequences of a set Γ of axioms which are unlikely to hold if the rest of Cn(Γ) does.
 - Repair : suggest axioms to be preferably discarded or amended
- Linguistic input : web pages

Proposal

Problem

- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices MF Trimming :
- illust ration Trimming

- Automatically gathered linguistic evidence in order to detect and repair such violations of common sense.
 - Detect : identify consequences of a set Γ of axioms which are unlikely to hold if the rest of Cn(Γ) does.
 - Repair : suggest axioms to be preferably discarded or amended
- Linguistic input : web pages
- Main hypothesis (distributional evidence) : individuals which share linguistic contexts tend to instantiate the same concepts. Inspiration : ontology population/named entity classification (Tanev and Magnini, ...)

Similarity Plausibility Trimming Experiments Extensions Appendices MF Trimming : illustration Trimming : assumptions

Problem

Intuition

1 Problem

2 Intuition

- 3 Similarity
- 4 Plausibility
- 5 Trimming
- 6 Experiments
- 7 Extensions
- 8 Appendices
 - MF
 - Trimming : illustration
 - Trimming : assumptions

Problem Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices M F

Trimming : illust ration Trimming :

Trimming : assumptions

Example

 $\Gamma = \{ doctoralAdvisor(Thaddeus S.C. Lowe, Smithsonian Institution), doctoralAdvisor(Nick Katz, Bernard Dwork), \\ T \subseteq \forall doctoralAdvisor(Nick Context), \\ T \in \forall doctoralAdviso$

 $\top \sqsubseteq \forall doctoralAdvisor.Person, ... \}$

Γ ⊨ Person(Smithsonian Institution)
 Γ ⊨ Person(Bernard Dwork)

Proble m Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices M F

Trimming : illustration Trimming :

Example

 $\Gamma = \{ doctoralAdvisor(Thaddeus S.C. Lowe, Smithsonian Institution), doctoralAdvisor(Nick Katz, Bernard Dwork), \\ T \subseteq \forall doctoralAdvisor(Nick Ratz, Bernard Dwork), \\ T \in \forall doctoralAdvisor(Nick Ratz, Bernard Dwo$

 $\top \sqsubseteq \forall doctoralAdvisor.Person, ... \}$

- $\Gamma \models \text{Person}(Smithsonian Institution})$
 - $\Gamma \models Person(Bernard Dwork)$
- Assume also that :
 - $\Gamma \models \texttt{Person}(\textit{Margaret Atwood})$
 - $\Gamma \models Person(Peter Munk)$
 - $\Gamma \models Person(Thaddeus S.C. Lowe)...$
- Does "the Smithsonian institution" behave like terms denoting other instances of Person according to Γ ?
 Does "Bernard Dwork" behave like terms denoting other instances of Person according to Γ ?
 - 10/43

Plausibility

Trimming

Experiments

Extensions

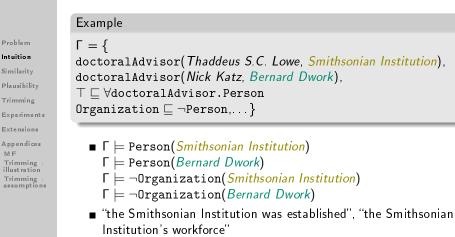

Appendices MF Trimming : illustration Trimming :

Example $\Gamma = \{$

doctoralAdvisor(Thaddeus S.C. Lowe, Smithsonian Institution), doctoralAdvisor(Nick Katz, Bernard Dwork),

 $\top \sqsubseteq \forall doctoralAdvisor.Person, ... \}$

- Γ ⊨ Person(Smithsonian Institution)
 Γ ⊨ Person(Bernard Dwork)
- "#the Smithsonian Institution was born"
 "Bernard Dwork was born"


```
Γ ⊨ Person(Smithsonian Institution)
```

```
\Gamma \models \text{Person}(Bernard Dwork)
```

```
\Gamma \models \neg \text{Organization}(Smithsonian Institution})
```

```
\Gamma \models \neg \text{Organization}(Bernard Dwork)
```

ME

"#Bernard Dwork was established", "#Bernard Dwork's workforce"

12/43

Problem

```
Trimming :
illustration
Trimming :
assumptions
```

Example $\Gamma = \{$

doctoralAdvisor(*Thaddeus S.C. Lowe*, *Smithsonian Institution*), doctoralAdvisor(*Nick Katz*, *Bernard Dwork*),

```
\top \sqsubseteq \forall \texttt{doctoralAdvisor.Person}
```

```
Organization \sqsubseteq \neg Person, \dots \}
```

- Linguistic contexts may help identify :
 - plausible consequences of Γ : Person(Bernard Dwork), ¬Organization(Bernard Dwork)
 - implausible consequences of Γ : Person(Smithsonian Institution), ¬Organization(Smithsonian Institution)

Choices

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming illustration

Trimming : assumptions

- Focus on Ψ_{Γ} : consequences of Γ the form A(e) or $\neg A(e)$, with A an atomic concept and e an individual.
- Linguistic terms labeling concepts and roles are never used (only terms labeling individuals).

Individual labels rather than concept labels ?

- Concept labels tend to be more polysemous : e.g. "Group", "Function", "Element", ...
- Lack of linguistic occurrences for :
 - Ad hoc concepts labels : ex (eGov ontologies) : "Triple path", "Structuring event type" (0 google occ.)

■ Abstract concepts : e.g. "perdurant"

Unary rather than binary predicates ?

 \blacksquare labels already known \Rightarrow lack of linguistic cooccurrences.

Problem Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming : assumptions

1 Problem

2 Intuition

3 Similarity

4 Plausibility

5 Trimming

6 Experiments

7 Extensions

- 8 Appendices
 - MF
 - Trimming : illustration
 - Trimming : assumptions

Similarity

- Problem
- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices MF Trimming :
- illust ration Trimming

- Distributional hypothesis : represent a term t by its linguistic contexts
- A context c :
 - sequence of words preceding/surrounding/following an occurrence of the term, possibly lemmatized
 - syntactic dependency, . . .
 - ignoring punctuation, determiners, ...
- A terms *t* is represented as a vector **v**^{*t*} of frequencies with each observed context.

Similarity

Problem

Intuition

- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices M F
- Trimming : illust ration Trimming :
- assumptions

- Distributional hypothesis : represent a term t by its linguistic contexts
- A context *c* :
 - sequence of words preceding/surrounding/following an occurrence of the term, possibly lemmatized
 - syntactic dependency, . . .
 - ignoring punctuation, determiners, ...
- A terms *t* is represented as a vector **v**^{*t*} of frequencies with each observed context.
- Weighting observed frequencies :
 - $\blacksquare PMI(c, e) = -\log \frac{p(c, e)}{p(e) \cdot p(c)}$
 - self-information (Giulano and Gliozzo) : self(c) = $-\log(p(c))$, with p(c) obtained from an external language model.

Similarity

Problem

Intuition

- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices M F
- Trimming : illust ration Trimming :
- Trimming : assumptions

- Distributional hypothesis : represent a term t by its linguistic contexts
- A context *c* :
 - sequence of words preceding/surrounding/following an occurrence of the term, possibly lemmatized
 - syntactic dependency, . . .
 - ignoring punctuation, determiners, ...
- A terms *t* is represented as a vector **v**^{*t*} of frequencies with each observed context.
- Weighting observed frequencies :
 - $\blacksquare PMI(c, e) = -\log \frac{p(c, e)}{p(e) \cdot p(c)}$
 - self-information (Giulano and Gliozzo) : self(c) = $-\log(p(c))$, with p(c) obtained from an external language model...
- Reducing vector dimensions : latent semantic analysis (SVD), latent Dirichlet allocation, skip-gram model, ...
- Similarity sim (t_1, t_2) given by some distance (cosine, ...) between \mathbf{v}^{t_1} and \mathbf{v}^{t_2} .

Problem Intuition Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming : assumptions

1 Problem

2 Intuition

Similarity

4 Plausibility

5 Trimming

6 Experiments

7 Extensions

- 8 Appendices
 - MF
 - Trimming : illustration
 - Trimming : assumptions

Plausibility of $A(e) \in Cn(\Gamma)$

Notation :

■ sim(e, e') : similarity between distributional representations of terms denoting e and e'.

•
$$inst_{\Gamma}(A) = \{e' \mid \Gamma \models A(e')\}$$

•
$$S = inst_{\Gamma}(A) \setminus \{e\}$$
 : support set for $A(e)$.

•
$$sim(e, S) \doteq \sum_{e' \in S} \frac{sim(e, e')}{|S|}$$

X^Γ_{e,|S|} (random variable) : expected average similarity between e and |S| random individuals of inst_Γ(⊤) \ {e}.

Plausibility score $sc_{\Gamma}(A(e))$

•
$$\operatorname{sc}_{\Gamma}(A(e)) = p(X_{e,|S|}^{\Gamma} \leq \operatorname{sim}(e,S))$$

- Measures how surprisingly high the similarity between e and individuals of S is.
- \blacksquare Based on the similarity between e and all individuals.

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming

illust ration Trimming : assumptions

Support set S

- Problem
- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices MF Trimming : illustration Trimming : assumption

- $S = inst_{\Gamma}(A) \setminus \{e\}$: support set for A(e).
- What about $inst_{\Gamma}(\neg A)$?
- Linguistically unrealistic : no reason to think that two instances of ¬A should behave similarly.

Example

- $\Gamma \models \neg \text{Person}(WW2)$
- $\Gamma \models Person(Thelonious Monk)$
- sim(Smithsonian Institution, WW2) > sim(Smithsonian Institution, Thelonious Monk) ???

Support set S

- Problem
- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices MF Trimming : illustration Trimming : assumptions

- $S = \text{inst}_{\Gamma}(A) \setminus \{e\}$: support set for A(e).
- What about $inst_{\Gamma}(\neg A)$?
- Linguistically unrealistic : no reason to think that two instances of ¬A should behave similarly.

Example

- $\Gamma \models \neg \text{Person}(WW2)$
- $\Gamma \models Person(Thelonious Monk)$
- sim(Smithsonian Institution, WW2) > sim(Smithsonian Institution, Thelonious Monk) ???
- Support set for $\neg A(e)$: $S = inst_{\Gamma}(A)$

Plausibility of $\neg A(e) \in Cn(\Gamma)$

Notation :

- sim(e, e') : similarity between distributional representations of e and e'.
- $inst_{\Gamma}(A) = \{e' | \Gamma \models A(e')\}$
- $S = inst_{\Gamma}(A)$: support set for $\neg A(e)$.
- X^Γ_{e,|S|} (random variable) : expected average similarity between e and |S| random individuals of inst_Γ(⊤) \ {e}.

Plausibility score $sc_{\Gamma}(\neg A(e))$

•
$$\operatorname{sc}_{\Gamma}(A(e)) = p(X_{e,|S|}^{\Gamma} \ge \sum_{e' \in S} \frac{\operatorname{sim}(e,e')}{|S|})$$

- Measures how surprisingly low the similarity between e and individuals of S is.
- Based on the similarity between *e* and all individuals.

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming : assumptions

Expected similarity

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming illustration

Trimming : assumptions

- X^Γ_{e,|S|}: expected average similarity between e and |S| random individuals of inst_Γ(⊤) \ {e}.
- Intuition : *ceteris paribus*, the lower |S|, the less informative sim(e, S) should be.
- The lower |S|, the more uniform de distribution of X^Γ_{e,|S|} should be.

Distribution of $X_{e,|S|}^{\Gamma}$

■
$$m \doteq sim(e, inst_{\Gamma}(\top) \setminus \{e\})$$

■ $X_{e,|S|}^{\Gamma} \sim Beta(m|S|+1, (1-m)|S|+1)$

Expected plausibility : example

- Problem Intuition
- Similarity

Plausibility

- Trimming
- Experiments
- Extensions
- Appendices MF Trimming : illustration Trimming :
- Trimming : assumptions

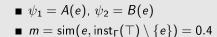
- $\psi_1 = A(e), \ \psi_2 = B(e)$
- $m = sim(e, inst_{\Gamma}(\top) \setminus \{e\}) = 0.4$

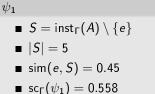
 ψ_1 $S = \text{inst}_{\Gamma}(A) \setminus \{e\}$ |S| = 5

$$\bullet \ \sin(e,S) = 0.45$$

Expected plausibility : example

Problem Intuition Similarity


Plausibility


Trimming


Experiments

Extensions

Appendices MF Trimming : illustration Trimming : assumptions

$$|S| = 50$$

$$\bullet \ \operatorname{sim}(e,S) = 0.45$$

• $sc_{\Gamma}(\psi_2) = 0.754$

: ୬९୯ 22/43 Intuition Similarity Plausibility Trimming Experiments Extensions

Problem

Appendices MF Trimming : illustration Trimming : assumptions

1 Problem

2 Intuition

- 3 Similarity
- 4 Plausibility

5 Trimming

- 6 Experiments
- 7 Extensions
- 8 Appendices
 - MF
 - Trimming : illustration
 - Trimming : assumptions

Trimming

- An input KB K.
- Objective : use plausibility scores to decide which axioms should be preferebly discarded or amended within K.
- Equivalently, select the optimal $\Gamma_1, ..., \Gamma_n \in 2^K$.

```
Linguistic compliance comp : 2^{\kappa} \mapsto \mathbb{R}
```

$$\mathsf{comp}(\Gamma) = \sum_{\psi \in \Psi_{\Gamma}} rac{\mathsf{sc}_{\Gamma}(\psi)}{|\Psi_{\Gamma}|}$$

Similarity Plausibility Trimming

Problem

Intuition

```
Experiments
```

```
Extensions
```

```
Appendices
MF
Trimming :
illustration
Trimming :
assumptions
```

Trimming

- An input KB K.
- Objective : use plausibility scores to decide which axioms should be preferebly discarded or amended within K.
- Equivalently, select the optimal $\Gamma_1, ..., \Gamma_n \in 2^K$.

```
Linguistic compliance comp : 2^{\kappa} \mapsto \mathbb{R}
```

$$\mathsf{comp}(\Gamma) = \sum_{\psi \in \Psi_{\Gamma}} rac{\mathsf{sc}_{\Gamma}(\psi)}{|\Psi_{\Gamma}|}$$

- \prec : strict partial order over 2^{κ} : $\Gamma_1 \prec \Gamma_2$ iff either $\operatorname{comp}(\Gamma_1) < \operatorname{comp}(\Gamma_2)$, or $(\operatorname{comp}(\Gamma_1) = \operatorname{comp}(\Gamma_2)$ and $\Gamma_1 \subset \Gamma_2)$.
- Assumption : focus on syntax (see appendix).
- Output O : intersection, or possibly disjunction of the subbases which are maximal wrt ≺.

Plausibility Trimming Experiments Extensions

Problem

Similarity

Appendices MF Trimming : illustration Trimming : assumptions

Trimming : practical limits

- Maximizing comp is not trivial :
 - comp(Γ) is not directly a function of Γ , but of Ψ_{Γ} : so there may be an optimal $\Psi' \subseteq \Psi_{K}$, and no Γ such that $\Psi_{\Gamma} = \Psi'$.
 - For $\psi \in \Psi_{\Gamma_1} \cap \Psi_{\Gamma_2}$, scr₁(ψ) \neq scr₂(ψ) in general, because the support sets for ψ differ in Γ_1 and Γ_2 .
- \blacksquare The output ${\cal O}$ can be very weak, e.g. if $|{\cal O}| < 0.5*|{\it K}|$

- Problem Intuition
- Similarity
- Plausibility

Trimming

- Experiments
- Extensions
- Appendices MF Trimming : illustration Trimming :
- assumptions

Trimming : practical limits

- Maximizing comp is not trivial :
 - comp(Γ) is not directly a function of Γ , but of Ψ_{Γ} : so there may be an optimal $\Psi' \subseteq \Psi_{K}$, and no Γ such that $\Psi_{\Gamma} = \Psi'$.
 - For $\psi \in \Psi_{\Gamma_1} \cap \Psi_{\Gamma_2}$, scr₁ $(\psi) \neq$ scr₂ (ψ) in general, because the support sets for ψ differ in Γ_1 and Γ_2 .
- \blacksquare The output ${\cal O}$ can be very weak, e.g. if $|{\cal O}| < 0.5 * |{\it K}|$

More plausible scenarios

- Search space previously circumscribed : e.g. discard at most n axioms.
- (Iteratively) discard the worst axiom (see evaluation).

- Problem Intuition
- Similarity
- Plausibility

Trimming

- Experiments
- Extensions
- Appendices MF Trimming : illustration Trimming : assumptions

Alternatives to comp

Problem Intuition Similarity Plausibility Trimming Experiments

С

Extensions

Appendices M F

Trimming : illust ration Trimming :

assumptions

Linguistic compliance $\operatorname{comp}_{K}: 2^{K} \mapsto \mathbb{R}$

$$\mathsf{omp}_{\mathcal{K}}(\Gamma) = \sum_{\psi \in \Psi_{\Gamma}} \frac{\mathsf{sc}_{\mathcal{K}}(\psi)}{|\Psi_{\Gamma}|}$$

- More amenable to optimizations.
- Ex (trivial) : a subbase Γ₁ with max _{ψ∈ΨΓ1} sc_K(ψ) < comp_K(Γ₂) for some already evaluated subbase Γ₂.

 \Rightarrow No subbase of Γ_1 can be optimal wrt \prec .

Drawback : potentially higher number of optimal subbases.

Alternatives to comp

Problem Intuition Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming : assumptions Lexicographic ordering $\leq_{lex} \subseteq 2^K \times 2^K$

 Instead of plausibilities mean, penalize subbases whose consequences have a low plausibility (see appendix)

• Then \prec is defined by $\Gamma_1 \prec \Gamma_2$ iff either $\Gamma_1 \prec_{lex} \Gamma_2$, or $(\Gamma_1 =_{lex} \Gamma_2$ and $\Gamma_1 \subset \Gamma_2)$.

Lexicographic ordering $\leq_{lex_{\kappa}} \subseteq 2^{K} \times 2^{K}$

■ Identical to \leq_{lex} , but using sc_K instead of sc_Γ for plausibility.

 Closer to traditional KB debugging / belief base revision : identify undesired consequences within K before trimming.

Problem Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming : assumptions

1 Problem

2 Intuition

3 Similarity

4 Plausibility

5 Trimming

6 Experiments

7 Extensions

- 8 Appendices
 - MF
 - Trimming : illustration
 - Trimming : assumptions

Input 1 : real data

Real input KB

Problem

Similarity

Plausibility

Trimming Experiments

Extensions Appendices

illust ration Trimming assumptions

MF Trimming :

- Source : LOD
- Evaluation procedure : manually verify if consequences with lowest plausibility and discarded axioms are actually erroneous.
- Advantage : plausible data
- Drawback : subjective evaluation (low inter annotator agreent)
- Dataset K_{DBP} : 5721 (logical) axioms automatically extracted from DBPedia (see appendix).
- 1095 individuals
- ABox + TBox
- expressivity : $\mathcal{AL}^{(D)}$

Input 2 : artificially degraded data

Artificially degraded KB

- Source : higher quality KB
- Degrading procedure : randomly select an axiom φ of K, and generate φ' by replacing sign(φ) with random elements of sign(K). The syntactic structure remains unchanged.
- Requirements : the resulting base K' = K ∪ {φ'} must be consistent, and |Ψ_K| < |Ψ_{K'}|.
- Assumption : random axioms are very likely be absurd, and so random consequences to be outliers within $\Psi_{K'}$.

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices M F

Trimming : illust ration Trimming :

assumptions

Input 2 : artificially degraded data

Artificially degraded KB

- Source : higher quality KB
- Degrading procedure : randomly select an axiom \u03c6 of K, and generate \u03c6' by replacing sign(\u03c6) with random elements of sign(K). The syntactic structure remains unchanged.
- Requirements : the resulting base K' = K ∪ {φ'} must be consistent, and |Ψ_K| < |Ψ_{K'}|.
- Assumption : random axioms are very likely be absurd, and so random consequences to be outliers within $\Psi_{K'}$.
- Evaluation : automatically retrieve the generated axioms and consequences within K' and Ψ_{K'} respectively.
- Drawback : artificial data
- Advantage : objective evaluation

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices M F

Trimming : illust ration Trimming :

assumptions

Input 2 : artificially degraded KB

- Problem
- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices MF Trimming : illustration Trimming : assumptions

- Dataset K_F: 1028 axioms automatically extracted from the NEON fisheries ontology (see appendix).
- 71 indivduals
- ABox + TBox
- \blacksquare expressivity : \mathcal{SI}

Linguistic input

Corpora

- Web pages retrieved with a search engine, using individals' labels as queries.
- K_{DBP} : \approx 57 000 pages, K_F : \approx 6 300 pages

Plausibility Trimming Experiments

Problem

Intuition

Similarity

Extensions

Appendices MF Trimming : illustration Trimming : assumptions

Linguistic input

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming :

assumptions

Corpora

- Web pages retrieved with a search engine, using individals' labels as queries.
- K_{DBP} : \approx 57 000 pages, K_F : \approx 6 300 pages

Linguistic contexts

- LP : (customized) sequences of surrounding lemma-POS (shifting window), frequencies weighted with PMI Limit : "more results about X", "more about X on Twitter", .
- NP : Ngrams preceding or following the term, frequencies weighted with PMI
- NS : Ngrams, frequencies weighted with self-information (querying the Microsoft Web N-gram corpus).
- **NPS** : Ngrams + PMI + self-information.
- Similarities : cosine distances

Evaluation : plausibility

- Input : K_F
 - Generation of 100 random axioms $\phi_1, \ldots, \phi_{100}$ out of K_F .
 - K_1, \ldots, K_{100} : 100 input KBs, such that $K_i = K_F \cup \{\phi_i\}$.
 - For each K_i , order Ψ_{K_i} by plausibility.

$$\bullet \Psi_{K_i}^{rand} = \Psi_{K_i} - \Psi_{K_F}$$

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming :

Evaluation : plausibility

- Problem
- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices MF Trimming : illustration Trimming :

- Input : K_F
- Generation of 100 random axioms $\phi_1, \ldots, \phi_{100}$ out of K_F .
- K_1, \ldots, K_{100} : 100 input KBs, such that $K_i = K_F \cup \{\phi_i\}$.
- For each K_i , order Ψ_{K_i} by plausibility.

$$\Psi_{K_i}^{rand} = \Psi_{K_i} - \Psi_{K_F}$$

	rank	p-val
LP	4.15 / 216.1	< 0.001
NP	9.73 / 216.1	< 0.001
NS	7.33 / 216.1	< 0.001
NPS	5.59 / 216.1	< 0.001

Average ranking among Ψ_{K_i} of the lowest-ranked formula of $\Psi_{K_i}^{rand}$, and p-value for the rankings of all formulas of all $\Psi_{K_i}^{rand}$

■ For most K_i (75/100), $|\Psi_{K_i}^{rand}| = 1$. In most of theses cases (57/75), the only formula in $\Psi_{K_i}^{rand}$ was also the one with lowest plausibility in Ψ_{K_i} .

Evaluation : trimming

- Problem
- Intuition
- Similarity
- Plausibility
- Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming : assumptions

- For each K_i , the set $\Delta_i = \Gamma_{i,1}, \ldots, \Gamma_{i,1029}$ of all immediate subbase of K_i was computed.
- Within Δ_i , all $\Gamma_{i,j}$ such that $\Psi_{\Gamma_{i,j}} \neq \Psi_{\kappa_i}$ were ordered according to \prec .
- Weighting : LP (lemmaPos + PMI)

	rank	p-val
comp(Γ)	7.86 / 80.03	< 0.001
comp _{Ki} (Γ)	8.05 / 80.03	< 0.001
ĭ⊥lex	6.51 / 80.03	< 0.001
<i>ĭ</i> lex _{κi}	2.47 / 80.03	< 0.001

Average ranking of the randomly generated statement ϕ_i for each K_i , and p-value for the rankings of all ϕ_i

Evaluation : iterated trimming, K_F

• $K' = K_F$ extended with 20 random axioms

|K'| = 1028 + 20 = 1048

		val.	prec. & rec.	p-val (prop. test)
NPS	comp	9	0.45	< 0.001
	comp _K	9	0.45	< 0.001
	ĭlex	3	0.15	< 0.002
	ĭlexκ	9	0.45	< 0.001
LP	comp	10	0.5	< 0.001
	comp _K	10	0.5	< 0.001
	ĭlex	5	0.25	< 0.001
	ĭlexκ	10	0.5	< 0.001

Table: Randomly generated axioms among the first 20 discarded ones

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming :

illust ration Trimming

Evaluation : iterated trimming, K_{DBP}

Problem

Intuition

Similarity

Plausibility

Trimming

Experiments

Extensions

Appendices MF Trimming : illustration Trimming : assumptions

■
$$|K_{DBP}| = 5721$$

		val.	prec.
NPS	comp	7	0.35
	ĭlex	3	0.15
LP	comp	11	0.55
	\preceq_{lex}	5	0.25

Table: Actually erroneous axioms among the 20 first discarded ones

- Problem Intuition Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices MF Trimming : illustration Trimming : assumptions

- 1 Problem
- 2 Intuition
 - 3 Similarity
- 4 Plausibility
- 5 Trimming
- 6 Experiments

7 Extensions

- 8 Appendices
 - MF
 - Trimming : illustration
 - Trimming : assumptions

Extensions

Problem

- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments

Extensions

Appendices MF Trimming : illustration Trimming : assumptions

Complex concepts

- Most DLs allow the construction of arbitrary complex DL concepts, e.g. ∃doctoralAdvisor.⊤
- They could (in theory) be used instead of A.
- If Ψ^{*}_Γ is the set of all resulting consequences, no finite subset Ψ' of Ψ^{*}_Γ is such that Ψ^{*}_Γ ⊆ Cn(Ψ').
 - \Rightarrow Need to choose among these concepts.
- Some complex concepts are not relevant linguistically, e.g. (Moldavian ⊔ Muslim) ⊓ Lawyer ⊓ ∃hasFather.∀livesIn.Appartment

Extensions

- Problem Intuition
- Similarity
- Plausibility
- Trimming
- Experiments

Extensions

Appendices MF Trimming : illustration Trimming : assumptions

Complex concepts

- Most DLs allow the construction of arbitrary complex DL concepts, e.g. ∃doctoralAdvisor.⊤
- They could (in theory) be used instead of A.
- If Ψ^{*}_Γ is the set of all resulting consequences, no finite subset Ψ' of Ψ^{*}_Γ is such that Ψ^{*}_Γ ⊆ Cn(Ψ').
 - \Rightarrow Need to choose among these concepts.
- Some complex concepts are not relevant linguistically, e.g. (Moldavian ⊔ Muslim) □ Lawyer □ ∃hasFather.∀livesIn.Appartment

$$e \neq e'$$

$$\blacksquare \text{ Set } \Psi_{\Gamma} = \{ \psi = e \neq e' \mid \! \Gamma \models \psi \}$$

• Penalize comp(Γ) if $\sim (e, e')$ is high.

Intuition Similarity Plausibility Trimming Experiments Extensions

Problem

Appendices M F

M F Trimming : illust ration Trimming : assumptions 1 Problem

2 Intuition

3 Similarity

4 Plausibility

5 Trimming

6 Experiments

⁷ Extensions

8 Appendices

- MF
- Trimming : illustration
- Trimming : assumptions

Modal fragment (MF) of FOL (= ALC)

- Problem
- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions
- Appendices
- ΜF
- Trimming : illustration Trimming : assumptions

- If A is a unary predicate, then $A(x) \in MF$.
- MF if closed under boolean operators.
- If $\phi \in MF$, y does not appear in ϕ , and R is a binary predicate, then :
 - $\blacksquare \exists y (R(x,y) \land \phi[x/y]) \in \mathsf{MF}$
 - $\forall y(R(x,y) \rightarrow \phi[x/y]) \in \mathsf{MF}$

Trimming with $\leq_{lex_{\kappa}}$

Problem

Appendices M F

```
Trimming :
illust ration
```

Trimming : assumptions

Example $\Omega = \{$

(1) doctoralAdvisor(*Thaddeus S.C. Lowe*, *Smithsonian Institution*),

(2) doctoralAdvisor(Nick Katz, Bernard Dwork),

 $(3) \top \sqsubseteq \forall doctoralAdvisor.Person$

```
(4) Organization \sqsubseteq \neg Person
```

 Assume doctoralAdvisor, Bernard Dwork and Smithsonian Institution do not appear in Γ \ Ω.

Trimming :

- discarding axioms in order to give up implausible consequences, but retain plausible ones.
- no axiom should be unnecessarily discarded
- Only one solution here : discarding (1).

Trimming : assumptions

- Problem
- Intuition
- Similarity
- Plausibility
- Trimming
- Experiments
- Extensions

Appendices M F

Trimming : illust ration

Trimming assumptions

- \prec : strict partial order over 2^{κ} : $\Gamma_1 \prec \Gamma_2$ iff either $\operatorname{comp}(\Gamma_1) < \operatorname{comp}(\Gamma_2)$, or $(\operatorname{comp}(\Gamma_1) = \operatorname{comp}(\Gamma_2)$ and $\Gamma_1 \subset \Gamma_2$).
- Minimize syntactic information loss whenever possible, i.e. Γ₁ and Γ₂ viewed as bases, not theories. In particular :
 - If $Cn(\Gamma_1) = Cn(\Gamma_2)$, but $\Gamma_1 \not\subseteq \Gamma_2$ and $\Gamma_2 \not\subseteq \Gamma_1$, then Γ_1 and Γ_2 are not comparable wrt \prec .
 - Redundancies should be preserved when possible : if $Cn(\Gamma_1) = Cn(\Gamma_2)$ and $\Gamma_1 \subset \Gamma_2$, then $\Gamma_1 \prec \Gamma_2$ still holds.

Lexicographic ordering \leq_{lex}

Intuition Similarity Plausibility Trimming

Problem

- Experiments
- Extensions
- Appendices M F
- Trimming : illust ration

Trimming :

• $\omega_{\Gamma} \doteq \omega_{\Gamma}^{1}, .., \omega_{\Gamma}^{|\Psi_{\Gamma}|}$: formulas of Ψ_{Γ} order by increasing score sc_r

•
$$\operatorname{sc}_{\Gamma}(\omega_{\Gamma}) = \operatorname{sc}_{\Gamma}(\omega_{\Gamma}^{1}), .., \operatorname{sc}_{\Gamma}(\omega_{\Gamma}^{|\Psi_{\Gamma}|})$$

- \leq_{lex} defined by $\Gamma_1 \leq_{lex} \Gamma_2$ iff either :
 - $\operatorname{sc}_{\Gamma_1}(\omega_{\Gamma_1}) = \operatorname{sc}_{\Gamma_2}(\omega_{\Gamma_2})$, or ■ there is a $1 \leq i \leq |\Psi_{\Gamma_2}|$ such that $\operatorname{sc}_{\Gamma_1}(\omega_{\Gamma_1}^j) = \operatorname{sc}_{\Gamma_2}(\omega_{\Gamma_2}^j)$ for all
 - $1 \leq j < i$, and either scr1 $(\omega_{\Gamma_1}^i) <$ scr2 $(\omega_{\Gamma_2}^i)$ or $|\Psi_{\Gamma_1}| = i-1$